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1 Introduction

In decision analysis and risk and uncertainty evaluations, the lognormal distribution is the most
prominent. Our reasons for that are:

• It approximates the distribution of variables that result from multiplicative operations.

• It allows modelling a variable that has upside or downside.

• It has convenient mathematical properties.

Although there are many references on the mathematical properties of lognormal distributions,
these often lack handy formulas that allow practical application for decision analysis purposes.
Therefore we devote this article to the lognormal distribution and provide useful formulas, includ-
ing their derivation.

Note: in this document we use the convention of the descending cumulative distribution when
quoting percentiles. So P90 is the ’low’ value and P10 is the ’high’ value.

2 Summary of key formulas

In this part the mathematical properties of the lognormal distribution are summarized. Various
derivations are given in subsequent paragraphs.

2.1 Mathematical basis

In this section we review the basic formulas that are provided in e.g. wikipedia or textbooks on
statistics. These are used as a starting point.

Although limited use is made of the density function, it is provided here for completeness:

f(X) =
1

Xσ
√
2π

e−
(lnX−µ)2

2σ2 (1)

In this expression, X is the lognormally distributed variable which should be greater than 0.
x = ln(X) has a normal distribution. Furthermore µ is the expectation of x and σ is its standard
deviation. In the following we provide the main formulas as you can find them in the textbooks.
They are the basis for further derivations.

The mean or expectation, which we denote by E[X] or X̃:

E[X] = eµ+
1
2σ

2 (2)

The variance, which we denote by V AR[X] or Σ2

V AR[X] = (eσ
2

− 1)e2µ+σ2 (3)

The median, which we denote by P50:

P50 = eµ (4)
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The skewness, which we denote by γ:

γ = (eσ
2

+ 2)
√
eσ2 − 1 (5)

The following expressions provide the relationships between the mean and standard deviation
of the underlying normal distribution and the lognormal distribution metrics:

µ = ln(E[X])− 1

2
ln(1 +

V AR[X]

(E[X])2
) (6)

σ2 = ln(1 +
V AR[X]

(E[X])2
) (7)

These expressions form the basis for further derivations.

2.2 Practical formulas

The standard lognormal distribution is defined by two parameters. The common way is to spec-
ify the expectation and standard deviation. Below you see some examples of two parameter
lognormals.

Figure 1: Two lognormals

You note that the two parameter lognormal is right-sided and the curve starts at (0,0).

Often a distribution is characterized by three percentile values: P90, P50, P10. For a two parameter
lognormal distribution the following relationship applies:

P 2
50 = P90 × P10 (8)

The moments1 of a lognormal distribution can be calculated using the following formulas:
1With the first moment being the mean, the second moment being the square of the standard deviation and the third
moment being the skewness times the standard deviation to the third power.
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The mean or expectation:

E[X] ≡ X̃ = P50 × exp
(
K1 × [ln(P10)− ln(P50)]

2
)

(9)

K1 is a constant with K1 = 0.30443728...

The standard deviation:

Σ = X̃ ×

√
X̃2

P 2
50

− 1 (10)

The skewness:

γ =
Σ3

X̃3
+ 3

Σ

X̃
(11)

Vice versa, the percentile values are calculated as follows:

P50 =
X̃2√

X̃2 +Σ2
(12)

P90 ≈ P50 × e
−1.812

√
ln

(
X̃

)
−ln(P50) (13)

P10 ≈ P50 × e
+1.812

√
ln

(
X̃

)
−ln(P50) (14)

We can introduce a third parameter: a shift. In that way the lognormal can be positioned else-
where on the horizontal axis. See figure 2.

Figure 2: Shifted lognormal
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If we have a set of arbitrary percentile numbers P90, P50, P10 (P10 > P50 > P90, P10 − P50 >
P50 − P90) we can always fit a lognormal distribution by making use of a shift.

First we calculate the shift C:

C =
P 2
50 − P90 × P10

2P50 − P90 − P10
(15)

We then apply the shift to the percentiles:

P ′
90 = P90 − C (16)

P ′
50 = P50 − C (17)

P ′
10 = P10 − C (18)

We can now proceed with calculating the expectation or mean (X̃ ′), standard deviation (Σ′) and
skew (γ′) of the shifted lognormal distribution. However, the shift does not affect the standard
deviation and the skew, hence Σ = Σ′ and γ = γ′.

X̃ ′ = P ′
50 × exp

(
K1 × [ln(P ′

10)− ln(P ′
50)]

2
)

(19)
X̃ = X̃ ′ + C (20)

Σ = Σ′ = X̃ ′ ×

√
X̃ ′2

P ′2
50

− 1 (21)

γ = γ′ =
Σ3

X̃ ′3
+ 3

Σ

X̃ ′
(22)

So this means that for any set of three numbers we can calculate an exactly fitting lognormal
distribution provided that P10 − P50 is greater than P50 − P90.

In the following section you will find the derivations of these formulas.

3 Derivations

3.1 Percentiles

We define x as a stochastic normally distributed variable. Its mean is µ and its standard deviation
σ. If X is the corresponding lognormal variable, then we have:

X = ex (23)
x = ln(X) (24)
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We define a percentile value for x as xp,α withP (x > xp,α) = α, withα the descending cumulative
chance.

We can write:

xp,α = µ+ qα × σ (25)

qα is a constant that follows from the standardized normal distribution which depends on the per-
centile chosen. For example for α = 10%, qα ≈ 1.282.2 The corresponding lognormal percentile
is found as follows (we write q instead of qα for simplicity):

Xp = eµ+qσ (26)
= eµeqσ (27)
= P50e

qσ (28)

Going back to the normal distribution of x we know that:

xp,α = µ+ q × σ (29)
xp,1−α = µ− q × σ (30)

xp,α and xp,1−α are symmetric percentiles of the normal distribution for example the P90 and P10

if we were to take q = 1.282. The corresponding percentiles of the lognormal distribution X are:

Xp,α = P50 × eq×σ (31)
Xp,1−α = P50 × e−q×σ (32)

So:

Xp,α ×Xp,1−α = P50 × eq×σ × P50 × e−q×σ (33)
= P50

2 (34)

For example:

P50
2 = P10 × P90 (35)

2More precisely α = 1.2815515655446. This value can be calculated in a spreadsheet by using the function
NORM.INV(90%,0,1).
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3.2 From percentiles to expectation

So if we have a normally distributed variable x, then for a specific percentile, we have:

qα =
xp,α − µ

σ
(36)

If we now consider that a percentile value xp = ln(Pα), where Pα is the percentile value of the
lognormal distribution that has a chance α of being exceeded. So then:

qα =
ln(Pα)− µ

σ
(37)

Thus:

σ =
ln(Pα)− µ

qα
(38)

We also know that P50 = eµ hence µ = ln(P50). We then get:

σ =
ln(Pα)− ln(P50)

qα
(39)

So for example if we take α = 10%:

σ ≈ ln(P10)− ln(P50)

1.282
(40)

So if we now remember that X̃ = E[X] = eµ+
1
2σ

2 , then (writing exp(x) rather than ex for clarity):

X̃ = P50 × exp

(
[ln(Pα)− ln(P50)]

2

2[qα]2

)
(41)

X̃ = P50 × exp
(
K1 × [ln(P10)− ln(P50)]

2
)

(42)

K1 is a constant: K1 = 1
2qα2 ≈ 0.30443728, for α = 10%

K1 can be calculated by the spreadsheet function (0.5/(NORM.INV (90%, 0, 1)2).

This equation will give the same result if we replace P10 by P90. This provides a way to calculate
an exact mean of a lognormal distribution from the percentile values.
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3.3 The variance and standard deviation

We have:

E[X] = X̃ (43)

X̃ = eµ+
σ2

2 (44)

= eµ
√
eσ2 (45)

= P50

√
eσ2 (46)

Hence:

eσ
2

=
X̃2

P50
2 (47)

We have

V AR[X] = (eσ
2

− 1)e2µ+σ2 (48)

V AR[X] = (eσ
2

− 1)(eµ)2eσ
2 (49)

=

(
X̃2

P50
2 − 1

)
P50

2 X̃2

P50
2 (50)

= X̃2

(
X̃2

P50
2 − 1

)
(51)

Hence:

Σ = X̃

√
X̃2

P50
2 − 1 (52)

3.4 The skewness

γ = (eσ
2

+ 2)
√
eσ2 − 1 (53)

= (eσ
2

+ 2)

√
Σ2

e2µ+σ2 (54)

= (eσ
2

+ 2)

√
Σ2

X̃2
(55)
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We remember that:

Σ2 = V AR[X] = (eσ
2

− 1)e2µ+σ2 (56)

= (eσ
2

− 1)X̃2 (57)

Hence:

eσ
2

=
Σ2 + X̃2

X̃2
(58)

With this we can take the derivation of the skewness further:

γ = (
Σ2 + X̃2

X̃2
+ 2)

√
Σ2

X̃2
(59)

= (
Σ2

X̃2
+ 3)

Σ

X̃
(60)

γ =
Σ3

X̃3
+ 3

Σ

X̃
(61)

We have thus expressed the skewness (γ) of the lognormal distribution as a function of the mean
(X̃) and the standard deviation (Σ). This equation is central in the DeltaLogN method.

3.5 From moments to percentiles

We have with (51):

Σ2 = X̃2

(
X̃2

P50
2 − 1

)
(62)

Hence

Σ2

X̃2
=

X̃2

P50
2 − 1 (63)

X̃2

P50
2 =

Σ2

X̃2
+ 1 (64)

P 2
50 =

X̃4

Σ2 + X̃2
(65)
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Hence:
P50 =

X̃2√
X̃2 +Σ2

(66)

If we rewrite (28) as follows:
Pα = P50 × exp (qασ) (67)

Also, for (7) we get:

σ =

√√√√ln

(
X̃2 +Σ2

X̃2

)
(68)

and with (66) this becomes:

σ =

√√√√ln

(
X̃2

P 2
50

)
(69)

σ =
√
2×

√√√√ln

(
X̃

P50

)
(70)

Now we can write for P90 and P10, using (67):

P90 = P50 × exp

q90% ×
√
2×

√√√√ln

(
X̃

P50

) (71)

P90 ≈ P50 × e
−1.812

√
ln

(
X̃

)
−ln(P50) (72)

P10 = P50 × exp

q10% ×
√
2×

√√√√ln

(
X̃

P50

) (73)

P10 ≈ P50 × e
+1.812

√
ln

(
X̃

)
−ln(P50) (74)

Remember, qα is defined as the ordinate value of the standard normal distribution that has a
chance α of being exceeded. From the standard normal distribution for α = 90% then q =
−1.282.., for α = 10% then q = +1.282... These numbers need to be multiplied by

√
2 to get

−1.812 and +1.812 respectively.

3.6 The shifted lognormal distribution

How did we get expression (15) to calculate C?
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P ′2
50 = P ′

90 × P ′
10 (75)

(P50 − C)2 = (P90 − C)× (P10 − C) (76)
P 2
50 − 2CP50 + C2 = P90P10 − CP10 − CP90 + C2 (77)

2CP50 − C(P10 + P90) = P 2
50 − P90P10 (78)

C =
P 2
50 − P90P10

2P50 − P90 − P10
(79)

4 Other topics

4.1 Mirror imaged lognormal distributions

Sometimes we would like to model a phenomenon that has more downside than upside. Or we
may have a derived variable that has a negative skew. We can use mirror imaged lognormal
distributions for this purpose.

If X is a negatively skewed stochastic variable defined by P90, P50, P10 with (P50−P90) > (P10−
P50) then we can define X ′ such that it conforms to a two-parameter lognormal distribution by
applying this transformation:

X ′ = −X + C (80)

One can easily verify that expression (15) applies in this case as well. Once we have calculated
C, we can calculate the percentile values of distribution of X ′ as follows:

P ′
90 = −P10 + C (81)

P ′
50 = −P50 + C (82)

P ′
10 = −P90 + C (83)

From these percentiles (primed) we can calculate the moments of the transformed distribution
using the set of equations (19) to (22). For the moments of the original left skewed distribution
of X we simply have:

X̃ = −X̃ ′ + C (84)
Σ2 = Σ′2 (85)
γ = −γ′ (86)

This mirror imaging together with the shift option as per equation 15 means that it is possible
to fit a lognormal distribution to any three numbers.
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4.2 Asymmetry Ratio

One of the characteristics of the lognormal distribution is also that it can accommodate high
skews. In this respect it is more flexible than for example the triangular or pert distribution. At
the same time, this is a disadvantage. One may be tempted to model some uncertain variable
with a highly asymmetric distribution to show that there is a significant probability of a substantial
outlier. This may lead to modelling artefacts.

We introduce the asymmetry ratio. This is not an established indicator but we define and use it
in the NavIncerta courses.

The asymmetry ratio is defined as:

AR =
P10 − P50

P50 − P90
(87)

Hence, AR is always greater than 1.

Another way to interpret the asymmetry ratio is upside divided by downside. The higher the AR,
the more skewed the distribution.

In the graph below we plot the normalised standard deviation3 as a function of AR. The curve
starts at the left for a distribution with P90 = 1, P50 = 2 and P10 = 4. We keep the P90 and P50

fixed and increase the P10 from left to right (and thus the AR). What we see is that as the AR
increases, the standard deviation tends to increase rapidly. This is caused by the infinite tail of
the lognormal distribution, which gets a higher weight at higher asymmetry ratios. This effect is
even greater for the skewness.

Figure 3: Normalised standard deviation as a function of AR

The implication is that if we use highly skewed (asymmetric) lognormal distributions, the standard
deviation and skewness become very (unrealistically) large. A Monte Carlo simulation would
become unstable. High skews are therefore to be avoided.
3We mean the standard deviation divided by [P50 − P90].
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It is nearly always an unrealistic proposition to model an uncertain variable with a high AR. If this
is proposed it would be appropriate to investigate the reason and consider a different modelling
approach. To avoid such issues, it is also possible to use a truncated distribution, with for example
the last 1% of the distribution ignored. This approach will be discussed in another article.
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